
Software development is a 
complex endeavor. Its results are 
ephemeral, consisting of signals 
that control machines. The pro-
cess is entirely intellectual, with 
all intermediate products being 
marginal representations of the 
thoughts involved. The materials 
used to create the end product are 
extremely volatile: user require-
ments of what the users have yet 
to see, the interoperation of other 
program’s signals with our pro-
grams, and the interactions of the 
most complex processes yet – a 
team of people working together. 
Such a complex process requires 
empirical, rather than defined, 
process control. Scrum is a simple 
set of practices and rules that 
encompasses the transparency, 
inspection, and adaptation require-
ments inherent in empirical pro-
cess control.

Empirical Process Control

Laying out a process that will 
produce acceptable quality out-
put over and over again is called 
defined process control. We try to 
use defined processes whenever 
possible because with them we 
can crank up unattended produc-
tion to such a quantity that the 
output can be priced as a commod-
ity. However, if the commodity 
is of such unacceptable quality 
as to be unusable, the rework too 
great to make the price acceptable, 
or the cost of unacceptably low 
yields is too high, we have to turn 
to and accept the higher costs of 
empirical process control. In the 

long run, making successful products 
the first time using empirical process 
control has turned out to be much 
cheaper than reworking many unsuc-
cessful products using defined process 
control. 

Empirical process control has three 
legs underlying all of its implementa-
tions: transparency, inspection, and 
adaptation. Transparency means that 
those aspects of the process that af-
fect the outcome must be visible and 
known to those controlling the pro-
cess. Inspection requires that various 
aspects of the process be inspected 
frequently enough so that unaccept-
able variances in the process can be 
detected. This frequency must take 
into consideration the fact that all 
processes are changed by the act of 
inspection. Additionally, the inspec-
tor must possess the skills to assess 
what he or she is inspecting. The third 
leg of empirical process control is 
adaptation. If the inspector determines 
from the inspection that one or more 
aspects of the process are outside 
acceptable limits, and that the result-
ing product will be of unacceptable, 
the inspector must adjust the process 
or the material being processed. The 
adjustment must be made as quickly 
as possible to minimize further devia-
tion. 

An example of an empirical process 
control in software development is 
a code review. The code is reviewed 
against coding standards and industry 
best practices. Everyone involved in 
the review fully and mutually un-
derstands these standards and best 
practices. The code review occurs 
whenever someone feels that a sec-

tion of code is complete. The most 
experienced developers review 
the code, and their comments and 
suggestions lead to the developer 
adjusting his or her code.

Scrum: Skeleton and Heart

Scrum addresses the complexity 
of software development projects 
by implementing the inspection, 
adaptation, and visibility require-
ments of empirical process control 
in a set of simple practices and 
rules. When I say control, I don’t 
mean control to create what we 
predict. I mean that we will con-
trol the process to guide the work 
toward the most valuable outcome 
possible.

Scrum employs an iterative, 
incremental process skeleton on 
which hang all of its practices. The 
skeleton operates this way: At the 
start of each iteration, the team 
reviews what it must do. Then, it 
selects what it believes it can turn 
into an increment of potentially 
shippable functionality by the end 
of the iteration. The team is then 
left alone to make its best effort 
for the rest of the iteration. At the 
end of the iteration, the team pres-
ents the increment of functionality 
that it built so that the stakehold-
ers can inspect it and make timely 
adaptations to the project.

The heart of Scrum occurs 
within the iteration. The team 
takes a look at the requirements, 
the technology, and evaluates each 
other’s skills and capabilities. The 
team then collectively devises 
the best way it knows to build the 

What Is Scrum?
by Ken Schwaber



functionality, modifying the ap-
proach daily as it encounters new 
complexities, difficulties, and sur-
prises. The team figures out what 
needs to be done, and determines 
the best way to do it. This creative 
process is the heart of the Scrum’s 
productivity.

Scrum: Roles

Scrum implements this itera-
tive, incremental skeleton through 
three roles: the Product Owner, the 
Team, and the ScrumMaster. All 
management responsibilities in a 
project are divided between these 
three roles. 

The Product Owner is responsi-
ble for representing the interests of 
everyone with a stake in the proj-
ect and its resulting product. The 
Product Owner achieves initial and 
on-going funding for the project by 
creating the project’s initial overall 
requirements, return on invest-
ment objectives, and release plans. 
The list of requirements is called 
the Product Backlog. The Product 
Owner is responsible for using the 
Product Backlog to ensure that 
the most valuable functionality is 
produced first and built upon; this 
is achieved by frequently prioritiz-
ing the Product Backlog to queue 
up the most valuable requirements 
for the next iteration. The Product 
Owner is responsible for the suc-
cess of the product.

The Team is responsible for 
developing functionality. Teams 
are self-managing, self-organiz-
ing, and cross-functional. A Team 
is responsible for figuring out how 
to turn the Product Backlog into an 
increment of functionality within 
an iteration, and managing its own 
work to do so. The Team members 
are collectively responsible for the 

success of each iteration.
The ScrumMaster is responsible 

for the Scrum process, for teach-
ing it to everyone involved in the 
project, for implementing it so it 
fits within an organization’s culture 
and still delivers the expected bene-
fits, and for ensuring that everyone 
follows its rules and practices.

Scrum: Flow

A Scrum project starts with a 
vision of the system and a simple, 
baseline plan of cost and time-
frames. The vision may be vague at 
first, stated in market terms rather 
than product terms. The vision 
will become clearer as the proj-
ect moves forward. The Product 
Owner is responsible to those fund-
ing the project to deliver the vision 
in a manner that maximizes their 
return on investment. The Product 
Owner formulates a plan for doing 
so which includes a Product Back-
log. The Product Backlog is a list 
of functional and non-functional 
requirements that, when turned into 
functionality, will deliver this vi-
sion. The Product Backlog is prior-
itized so that the items most likely 
to generate value are top priority. 
The Product Backlog is divided 
into proposed releases. This is a 
starting point, and the contents, pri-
orities, and grouping of the Product 
Backlog into releases is expected to 
and usually does change the mo-
ment the project starts. Changes in 
the Product Backlog reflect chang-
ing business requirements and how 
quickly or slowly the Team can 
transform the Product Backlog into 
functionality. 

All work is done in Sprints. 
Each Sprint is an iteration of one 
month. Each Sprint is initiated with 
a Sprint Planning meeting, where 

the Product Owner and Team get 
together to collaborate about what 
will be done for the next Sprint. 
The Sprint Planning meeting has 
two parts. The first four hours are 
spent with the Product Owner 
presenting the highest priority 
Product Backlog to the Team. The 
Team questions him or her about 
the content, purpose, meaning, and 
intentions of the Product Backlog. 
When the Team knows enough, but 
before the first four hours elapses, 
the Team selects as much Product 
Backlog as it believes that it can 
turn into a completed increment of 
potentially shippable product func-
tionality by the end of the Sprint. 
The Team commits to do its best to 
do so to the Product Owner.

During the second four-hours 
of the Sprint Planning meeting, 
the Team plans out the Sprint. It 
creates a design within which the 
work can be done. Scrum requires 
Teams to build an increment of 
product functionality every Sprint. 
This increment must be potentially 
shippable, for the Product Owner 
may choose to immediately imple-
ment the functionality. Each incre-
ment must consist of thoroughly 
tested, well-structured and written 
code that has been built into an ex-
ecutable. The user operation of the 
functionality must be documented, 
either in Help files or user docu-
mentation. This is the definition of 
a “done” increment and it should 
factor into how much work a team 
can take on in a Sprint. It takes 
some development organizations 
awhile to be capable of building 
something this “done.”

Since the Team is responsible for 
managing its own work, it needs 
a tentative plan to start the Sprint. 
The tasks that comprise this plan 



are placed in a Sprint Backlog; the 
tasks in the Sprint Backlog emerge 
as the Sprint evolves. At the start of 
the second four-hour period of the 
Sprint Planning meeting, the Sprint 
has started and the clock is tick-
ing toward the month-long Sprint 
time-box. Note that Sprint Planning 
meetings cannot last longer than 
eight hours. They are timeboxed 
to avoid too much hand-wringing 
about what is possible. The goal is 
to get to work, not to think about 
working. 

Every day the team gets together 
for a fifteen minute meeting called 
a Daily Scrum. At the Daily Scrum, 
each Team member answers three 
questions: What have you done 
on this project since the last Daily 
Scrum meeting? What do you plan 

on doing on this project between 
now and the next Daily Scrum 
meeting? And, what impediments 
are in the way of you meeting your 
commitments toward this Sprint 
and this project? The purpose of 
the meeting is to synchronize the 
work of all team members daily 
and to schedule any meetings that 
the Team needs to forward its 
progress. The team members are 
inspecting each others work in light 
of the team’s commitments, and 
making adaptations to optimize 
their chance of meeting those com-
mitments.

At the end of the Sprint, a Sprint 
Review meeting is held. This is 
a four-hour timeboxed meeting 
where the Team presents what was 
developed during the Sprint to 

the Product Owner and any other 
stakeholders that wish to attend. 
This is an informal meeting, with 
the presentation of the functional-
ity intended to foster collaboration 
about what to do next based on 
what the Team just completed. The 
Product Owner and stake holder 
inspect the Team’s work in light of 
project goals, and make adaptations 
to optimize their chance of reach-
ing those goals.

After the Sprint Review and 
prior to the next Sprint Planning 
meeting, the ScrumMaster holds a 
Sprint Retrospective meeting with 
the Team. At this three hour, time-
boxed meeting the ScrumMaster 
encourages the team to revise, 
within the Scrum process frame-
work and practices, its develop-

Figure 1. Sample Product Backlog



ment process to make it more 
effective and enjoyable for the next 
Sprint. 

Collectively, the Sprint Planning 
meeting, the Daily Scrum meeting, 
the Sprint Review meeting, and 
the Sprint Retrospective meeting 
implement the empirical inspec-
tion and adaptation practices within 
Scrum.

Scrum: Artifacts

Product Backlog

The requirements for the product 
being developed by the project(s) 
are listed in the Product Backlog. 
The Product Owner is responsible 
for the Product Backlog, its con-
tents, its availability, 
and its prioritization. 
The Product Backlog is 
never complete, and the 
Product Backlog in the 
project plan only lays 
out the initially known 
and best-understood 
requirements. The Prod-
uct Backlog evolves 
as the product and the 
environment in which 
it will be used emerge. 
The Product Backlog 
is dynamic, in that 
management constantly 
changes it to identify 
what the product needs 
to be appropriate, com-
petitive, and useful. As 
long as a product exists, 
the Product Backlog 
also exists. An example 
of a Product Back-
log maintained on the 
Scrum Product Man-
agement tool, based in a 
spreadsheet, is shown in 
Figure 1, previous page.

This spreadsheet is the Product 
Backlog in March 2003, from a 
project for developing the Scrum 
Project Management software. 
The rows are the Product Backlog 
items, interspersed by Sprint and 
Release dividers. For instance, all 
of the rows above Sprint 1 were 
worked on in that Sprint. The rows 
between Sprint 1 and Sprint 2 rows 
were done in Sprint 2. Notice that 
the row “Display tree view of prod-
uct backlog, releases, sprints” is 
duplicated in Sprint 1 and Sprint2. 
This is because row 10 wasn’t 
completed in Sprint 1, so it was 
moved down to the Sprint 2 for 
completion. 

The first four columns are the 

Product Backlog item name, the 
initial estimate, the complexity 
factor, and the adjusted estimate. 
The complexity factor increases the 
estimate due to project characteris-
tics that reduce the productivity of 
the Team. The next columns are the 
Sprints during which the Product 
Backlog is developed. When the 
Product Backlog is first thought 
of and entered, its estimated work 
is placed into the column of the 
Sprint that is going on at that time. 
The developers and product owner 
devised most of the backlog items 
shown before starting this proj-
ect. The sole exception is row 31 
(Publish facility for entire project, 
publishing it as HTML web pages), 

Figure 2. Sample Burndown Chart



which wasn’t thought of until dur-
ing Sprint 3.

Burndown Chart

A burndown chart shows the 
amount of work remaining across 
time. The burndown chart is an 
excellent way of visualizing the 
correlation between the amount 
of work remaining at any point in 
time and the progress of the proj-
ect team(s) in reducing this work. 
The intersection of a trend line for 
work remaining and the horizontal 
axis indicates the most probable 
completion of work at that point in 
time. A burndown chart reflecting 
this is in Figure 2. The burndown 
chart helps me to “what if” the 
project by adding and removing 
functionality from the release to get 
a more acceptable date, or extend-
ing the date to include more func-
tionality. The burndown chart is the 
collision of reality (work done and 

how fast it’s being done) with what 
is planned, or hoped for.

Sprint Backlog

The Sprint Backlog defines the 
work, or tasks, that a Team defines 
for turning the Product Backlog 
it selected for that Sprint into an 
increment of potentially ship-
pable product functionality. The 
Team compiles an initial list of 
these tasks in the second part of 
the Sprint Planning meeting. Tasks 
should have enough detail so that 
each task takes roughly four to 
sixteen hours to finish. Tasks that 
are of longer estimated time are 
used as placeholders for tasks that 
haven’t been finely defined. Only 
the team can change the Sprint 
Backlog. The Sprint Backlog is 
a highly visible, real time picture 
of the work that the team plans to 
accomplish during the Sprint. An 
example Sprint Backlog is in Fig-

Figure 3. Sample Scrum Backlog

ure A-3. The rows represent Sprint 
Backlog tasks. The columns rep-
resent the days in the month of the 
Sprint. Once a task is defined, the 
estimated number of hours remain-
ing to complete the task is place in 
the intersection of the task and the 
Sprint day by the person working 
on the task.

Final Thoughts

There is no panacea for the 
complexities of software develop-
ment. Scrum is devised specifi-
cally to wrest usable products from 
complex problems. It has been 
used successfully on thousands of 
projects in hundreds of organiza-
tions over the last sixteen years. 
Scrum is not for those who seek 
easy answers and simple solutions 
to complex problems; it is for those 
who understand that complex prob-
lems can only be met head on with 
determination and wit.


